Sheet Metal Forming Deep drawing

Introduction

Definition of sheet metal

Deep drawing is the forming of sheet blanks into hollow parts.

Products

mad $\mathbb{A M A A R A}$

Deformation - stress

Role of tangential stress in wrinkling

Deformation - stress

(a)

(b)

Complex inhomogeneous stress and strain state exists.

Role of blank holder

If $\mathrm{D} / \mathrm{s}<20$ (thick sheet), no blank holder is needed.

Too low blank holder pressure
\rightarrow wrinkling

Too high blank holder pressure \rightarrow crack

Defects

Wrinkling

Wall wrinkling

Crack

Earing

Deep drawing without blank holder

Deep drawing with tractrix curved die without blank holder:
(a)

(b)

(c)

A tractrix is a curve for which the section of the tangent between the point of contact and the y-axis is constant.

Deep drawing with heated die

For high strength and for materials with low deep drawability

Multistep deep drawing - second step

Multistep deep drawing - reverse redrawing
a)

b)

Blank geometry - axisymmetric part

Assuming constant surface area:

$$
\begin{aligned}
& A=\frac{D^{2} \pi}{4}=\frac{d_{m}^{2} \pi}{4}+d_{m} \pi\left(h_{m}+h^{\prime}\right) \\
& D=\sqrt{d_{m}^{2}+4 d_{m}\left(h_{m}+h^{\prime}\right)}
\end{aligned}
$$

If the workpiece consist of simple shapes

$$
\left(A_{1}, A_{2} \ldots . . A_{n}\right)
$$

$$
\begin{gathered}
A=\frac{D^{2} \pi}{4}=\sum_{i=1}^{n} A_{i}, D=\sqrt{\frac{4}{\pi} \sum_{i=1}^{n} A_{i}} \\
h / d=0,5 . .4 \mathrm{~mm}, h=20 . .300 \mathrm{~mm} \\
h^{\prime}=2-12 \mathrm{~mm}
\end{gathered}
$$

Technology planning

Due to the material and geometric limit, not any geometry can be done in one step; The drawn cup can be formed further in other deep drawing steps. For each steps a draw ratio $m_{t}=d_{n} / d_{n-1}$ can be defined: the ratio of the diameters in the $\mathrm{n}^{\text {th }}$ and n - $1^{\text {th }}$ step.
Its maximal values is material dependent, but $\boldsymbol{m}=\mathbf{0 . 5 5 - 0 . 6}$ for the first step (forming a cup from planar blank) and $\boldsymbol{m}_{\boldsymbol{t}}=\mathbf{0 . 7 5 - 0 . 8 5}$ for the further drawing steps.
The material is characterized by a maximum total draw ratio of $\boldsymbol{q}_{\max }$.
(If $\boldsymbol{q}_{\boldsymbol{m a x}}$ is smaller, the drawability is better!)

Blank for cylindrical pieces

1) Assuming that the surface area is constant; the surface area of the final geometry is calculated.
2) If the material is anisotropic, the cup height is increased with $5-15 \%$ depending on the anisotropy value of the material
3) The blank diameter D is calculated.

Technology planning

Knowing the maximal drawing ratio, the first diameter is $d_{l}=m D$, the further drawing diameters are: $d_{2}=m_{t} d_{1}=m_{t} m D, d_{3}=m_{t} d_{2}=m_{t}^{2} m D \ldots$

Diameter after \boldsymbol{n} drawing: $d_{n}=m_{t}^{n-1} m D$

If D and d_{n} are known, then the number of necessary drawing steps:

$$
n=\frac{\ln d_{n}-\ln (m D)}{\ln m_{t}}+1
$$

The resulted value must be rounded up. Therefore, it is useful to continuously increase a bit the ratios from the first step to distribute the difference.

The number of drawing steps to the first annealing:

$$
k=\frac{\ln \left(1-q_{\max }\right)-\ln m}{\ln m_{t}}+1
$$

The resulted value must be rounded down.

Blank for complex geometries

Breakdown of a rectangular hollow part into elements of equal area

Technology planning

Related technique - ironing

Multistep redraw with ironing

Die design examples

Die design examples

Hydro-mechanical deep drawing

Example

Calculate the total number of drawing steps and the number of steps to the first annealing:

$$
\begin{aligned}
& d_{m}=30 \mathrm{~mm} \\
& h=70 \mathrm{~mm} \\
& s=2 \mathrm{~mm} \\
& D=? ? ? \\
& n=? ? ? \\
& \text { annealing ??? } \quad\left(\mathrm{q}_{\max }=0.5\right) \\
& (\mathrm{m}=0.6) \\
& \left(\mathrm{m}_{\mathrm{t}}=0.85\right)
\end{aligned}
$$

Thank you for your attention!

