

Sheet Metal Forming Deep drawing

1

Introduction

Definition of sheet metal

Deep drawing is the forming of sheet blanks **into hollow parts**.

- *1* drawing punch
- 2 blank holder
- 3 drawing ring
- 4 container
- 5 base plate
- 6 ejector

Products

Deformation - stress

4

Deformation - stress

Complex inhomogeneous stress and strain state exists.

Role of blank holder

If D/s < 20 (thick sheet), no blank holder is needed.

Too low blank holder pressure \rightarrow wrinkling

Too high blank holder pressure \rightarrow crack

Defects

Deep drawing without blank holder

Deep drawing with **tractrix** curved die without blank holder:

A tractrix is a curve for which the section of the tangent between the point of contact and the y-axis is constant.

Deep drawing with heated die

For high strength and for materials with low deep drawability

Multistep deep drawing – second step

Multistep deep drawing – reverse redrawing

Blank geometry – axisymmetric part

Assuming constant surface area:

$$A = \frac{D^{2}\pi}{4} = \frac{d_{m}^{2}\pi}{4} + d_{m}\pi(h_{m} + h')$$
$$D = \sqrt{d_{m}^{2} + 4d_{m}(h_{m} + h')}$$

If the workpiece consist of simple shapes (A_1, A_2, \dots, A_n)

$$A = \frac{D^2 \pi}{4} = \sum_{i=1}^n A_i, \quad D = \sqrt{\frac{4}{\pi} \sum_{i=1}^n A_i}$$

h/d=0,5..4 mm, h=20..300 mm, h'=2-12 mm

Technology planning

Due to the material and geometric limit, not any geometry can be done in one step; The drawn cup can be formed further in other deep drawing steps. For each steps a draw ratio $m_t = d_n/d_{n-1}$ can be defined: the ratio of the diameters in the nth and n-1th step.

Its maximal values is material dependent, but m=0.55-0.6 for the first step (forming a cup from planar blank) and $m_t=0.75-0.85$ for the further drawing steps.

The material is characterized by a maximum total draw ratio of q_{max} .

(If q_{max} is smaller, the drawability is better!)

Blank for cylindrical pieces

- Assuming that the surface area is constant; the surface area of the final geometry is calculated.
- If the material is anisotropic, the cup height is increased with 5-15% depending on the anisotropy value of the material
- 3) The blank diameter D is calculated.

Technology planning

Knowing the maximal drawing ratio, the first diameter is $d_1 = mD$, the further drawing diameters are: $d_2 = m_t d_1 = m_t mD$, $d_3 = m_t d_2 = m_t^2 mD$...

Diameter after **n** drawing: $d_n = m_t^{n-1} mD$

If D and d_n are known, then the **number of** necessary drawing **steps**:

$$n = \frac{\ln d_n - \ln(mD)}{\ln m_t} + 1$$

The resulted value must be **rounded up**. Therefore, it is useful to continuously increase a bit the ratios from the first step to distribute the difference.

The number of drawing steps to the first annealing:

$$k = \frac{\ln(1 - q_{max}) - \ln m}{\ln m_t} + 1$$

The resulted value must be rounded down.

Blank for complex geometries

Breakdown of a rectangular hollow part into elements of equal area

Evening out the design of the blank using arcs or straight lines

Technology planning

Related technique - ironing

Multistep redraw with ironing

Die design examples

Die design examples

20

Hydro-mechanical deep drawing

Example

Calculate the total number of drawing steps and the number of steps to the first annealing:

 $d_m = 30 \, mm$ h = 70 mms = 2mmD = ???n = ???annealing ??? $(q_{max} = 0.5)$ (m = 0.6) $(m_t = 0.85)$

Thank you for your attention!